A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys-Drash syndrome.

نویسندگان

  • C E Patek
  • M H Little
  • S Fleming
  • C Miles
  • J P Charlieu
  • A R Clarke
  • K Miyagawa
  • S Christie
  • J Doig
  • D J Harrison
  • D J Porteous
  • A J Brookes
  • M L Hooper
  • N D Hastie
چکیده

The Wilms tumor-suppressor gene, WT1, plays a key role in urogenital development, and WT1 dysfunction is implicated in both neoplastic (Wilms tumor, mesothelioma, leukemias, and breast cancer) and nonneoplastic (glomerulosclerosis) disease. The analysis of diseases linked specifically with WT1 mutations, such as Denys-Drash syndrome (DDS), can provide valuable insight concerning the role of WT1 in development and disease. DDS is a rare childhood disease characterized by a nephropathy involving mesangial sclerosis, XY pseudohermaphroditism, and/or Wilms tumor (WT). DDS patients are constitutionally heterozygous for exonic point mutations in WT1, which include mutations predicted to truncate the protein within the C-terminal zinc finger (ZF) region. We report that heterozygosity for a targeted murine Wt1 allele, Wt1(tmT396), which truncates ZF3 at codon 396, induces mesangial sclerosis characteristic of DDS in adult heterozygous and chimeric mice. Male genital defects also were evident and there was a single case of Wilms tumor in which the transcript of the nontargeted allele showed an exon 9 skipping event, implying a causal link between Wt1 dysfunction and Wilms tumorigenesis in mice. However, the mutant WT1(tmT396) protein accounted for only 5% of WT1 in both heterozygous embryonic stem cells and the WT. This has implications regarding the mechanism by which the mutant allele exerts its effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Software and database for the analysis of mutations in the human WT1 gene

The WT1 gene, located at 11p13, encodes a zinc finger transcription factor involved in renal and gonadal development and in Wilms' tumor. Constitutional mutations of this gene have been described in most patients with Denys Drash syndrome (mesangial sclerosis associated with male pseudohermaphrodism and/or Wilms' tumor), but also in patients with genitourinary abnormalities and Wilms' tumor (WT...

متن کامل

Functional characterization of WT1 binding sites within the human vitamin D receptor gene promoter.

The Wilms' tumor suppressor gene, wt1, encodes a zinc finger transcription factor that can regulate gene expression. It plays an essential role in tumorigenesis, kidney differentiation, and urogenital development. To identify WT1 downstream targets, gene expression profiling was conducted using a cDNA array hybridization approach. We confirm herein that the human vitamin D receptor (VDR), a lig...

متن کامل

A necropsy case of Denys-Drash syndrome with a WT1 mutation in exon 7.

The Wilms tumour suppressor gene 1 (WT1) is located on chromosome 11p13, encodes zinc finger domains, and its product plays a role in the regulation of gene transcription. Since expression of WT1 is observed in the glomerular epithelium of the kidneys and the genital ridge during the embryonic period, WT1 is thought to have a functional role in renal and gonadal organogenesis. 3 Denys-Drash syn...

متن کامل

Constitutional WT1 mutations correlate with clinical features in children with progressive nephropathy

EDITOR—The WT1 tumour suppressor gene encodes a transcriptional factor containing four zinc fingers. 2 This gene has two alternative splicing regions, one consisting of 17 amino acids which are encoded by the whole of exon 5 and the other comprising three amino acids (lysine, threonine, and serine (KTS)) situated between the third and fourth zinc fingers encoded by the 3' end of exon 9. Four is...

متن کامل

WT1 regulates the expression of the major glomerular podocyte membrane protein Podocalyxin

The WT1 tumor suppressor gene encodes a zinc finger transcription factor expressed in differentiating glomerular podocytes. Complete inactivation of WT1 in the mouse leads to failure of mesenchymal induction and renal agenesis, an early developmental phenotype that prevents analysis of subsequent stages in glomerular differentiation [1]. In humans with Denys-Drash Syndrome, a heterozygous germl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 6  شماره 

صفحات  -

تاریخ انتشار 1999